ISOPHOT Mapping of Vega-type Circumstellar Dust

S. B. Fajardo-Acosta (JPL/IPAC), D. E. Backman (Franklin & Marshall), & R. E. Stencel (U. of Denver)

We searched for far-infrared (60 μ m) extended emission, in the form of circumstellar dust disks, in the maps of seven main-sequence stars. Direct detection of circumstellar disks in these systems can advance our understanding of the Vega phenomenon and the nature of protoplanetary disk candidates.

We obtained 60 μ m maps with the PHOT C-100 3×3-pixel far-infrared camera on-board ISO, in the P32 microscanning dedicated mapping mode. The maps span 6'15"×5' 45" (RA×decl), at a spatial resolution of ≈ 30 ". The maps presented here were obtained with integration times of 128 seconds at each spacecraft raster position. These integration times are 4 times larger than in previous similar maps of Vega-type stars obtained by Fajardo-Acosta, Stencel, & Backman (1997, ApJ, 487, L151; 1998, ApJ, 503, L193, hereafter FSB). Our goal was to increase S/N in the newer maps by a factor of 2 with respect to the previous ones.

The stars we observed are γ Oph (A0 V), α PsA (A3 V), γ Tri (A1 Vnn), 61 Cyg A (K5 V), τ^1 Eri (F5-6 V), τ Cet (G8 V), and ϵ Eri (K2 V). These systems are nearby, within 30 pc from us, and are suspected to harbor Vega-like circumstellar dust disks (Backman & Paresce 1993, Protostars & Planets III, ed. Levy & Lunine, 1253). We compared the maps of these systems with similar maps of the stars α Boo and α Aql, which do not possess circumstellar dust. We discuss techniques to model point-spread functions (PSFs) from the latter, and their subtraction from our Vega-type stellar maps.

We did not spatially resolve extended emission in the maps of γ Tri, 61 Cyg A, and τ Cet, upon comparison with our modeled PSFs. We could only marginally detect a ring of 60 μ m emitting dust around ϵ Eri, previously reported by Fajardo-Acosta, Stencel, & Backman (1998, BAAS, **193**, 69.07). This detection remains tentative.

The maps of γ Oph, α PsA, and τ^1 Eri definitely show extended emission when compared with model PSFs. We confirmed the previous detection in α PsA by FSB, but now can detect extended emission as far as ~ 700 AU from the star, as opposed to ~ 500 AU in the previous observations. The detection in γ Oph was only hinted at by FSB. The detection of extended emission around τ^1 Eri is reported for the first time here.